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Abstract 

Background:  Endocytoscopy (ECS) aids early gastric cancer (EGC) diagnosis by visualization of cells. However, it is 
difficult for non-experts to accurately diagnose EGC using ECS. In this study, we developed and evaluated a convolu-
tional neural network (CNN)-based system for ECS-aided EGC diagnosis.

Methods:  We constructed a CNN based on a residual neural network with a training dataset comprising 906 images 
from 61 EGC cases and 717 images from 65 noncancerous gastric mucosa (NGM) cases. To evaluate diagnostic ability, 
we used an independent test dataset comprising 313 images from 39 EGC cases and 235 images from 33 NGM cases. 
The test dataset was further evaluated by three endoscopists, and their findings were compared with CNN-based 
results.

Results:  The trained CNN required 7.0 s to analyze the test dataset. The area under the curve of the total ECS images 
was 0.93. The CNN produced 18 false positives from 7 NGM lesions and 74 false negatives from 28 EGC lesions. In the 
per-image analysis, the accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value 
(NPV) were 83.2%, 76.4%, 92.3%, 93.0%, and 74.6%, respectively, with the CNN and 76.8%, 73.4%, 81.3%, 83.9%, and 
69.6%, respectively, for the endoscopist-derived values. The CNN-based findings had significantly higher specificity 
than the findings determined by all endoscopists. In the per-lesion analysis, the accuracy, sensitivity, specificity, PPV, 
and NPV of the CNN-based findings were 86.1%, 82.1%, 90.9%, 91.4%, and 81.1%, respectively, and those of the results 
calculated by the endoscopists were 82.4%, 79.5%, 85.9%, 86.9%, and 78.0%, respectively.

Conclusions:  Compared with three endoscopists, our CNN for ECS demonstrated higher specificity for EGC diagno-
sis. Using the CNN in ECS-based EGC diagnosis may improve the diagnostic performance of endoscopists.
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Background
Gastric cancer is the fifth most common cancer and 
the third leading cause of cancer death worldwide [1]. 
Esophagogastroduodenoscopy (EGD) enables a more 
accurate diagnosis of early gastric cancer (EGC); there-
fore, the population-based EGD screening was intro-
duced in Japan, which aimed to reduce  gastric cancer 
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(GC) mortality [2]. However, conventional white light 
imaging endoscopy (WLE) misses a significant number 
of EGCs [3]. To overcome the limitations associated 
with WLE, image-enhanced endoscopy such as narrow-
band imaging (NBI)  has been developed with better 
diagnostic accuracy than WLE [4]. Previous reports 
have shown that NBI was useful for EGC diagnosis, and 
magnifying endoscopy with NBI (ME-NBI) was more 
accurate than WLE [5–7]. Despite improvements in 
EGD diagnosis, forceps biopsy is still required for his-
topathological diagnosis and is the gold standard of 
GC diagnosis. However, forceps biopsy has limitations, 
including restrictions due to antithrombotic medicine 
taken by the patient [8], sampling error caused by mis-
targeting [9], complications after biopsy [10], or addi-
tional medical cost [11].

Endocytoscopy (ECS), a contact-type ultrahigh-mag-
nification endoscopy, directly observes gastrointesti-
nal mucosal cells and neoplastic cells in real time. ECS 
achieves more accuracy as an optical biopsy approach 
and can allow endoscopists to skip forceps biopsy in 
some instances [12–16]. We have previously shown that 
ECS showed satisfactory accuracy for EGC diagnosis 
[17], and adequate training leads to a good concord-
ance rate of ECS diagnosis  regardless of endoscopic 
expertise [18]. Sufficient training by an appropriate 
expert instructor is required to obtain an excellent ECS 
diagnosis for EGC.

In recent years, artificial intelligence  (AI), and the 
deep learning subtype with a convolutional neural 
network (CNN) in particular, has been developed as 
a supportive tool to expand human intelligence and 
problem-solving ability in the medical field [19]. Deep 
learning has been adopted for image recognition and is 
suitable for clinical application, especially for diagno-
ses made in the fields of radiology [20], pathology [21], 
and gastrointestinal endoscopy [22]. In deep learn-
ing, the AI machine itself creates effective patterns by 
extracting and learning features that are difficult for 
humans to define, which improved the machine’s abil-
ity to recognize the image [23]. In the diagnosis of GC, 
the usefulness of the computer-aided diagnosis (CAD) 
systems, which use a wide variety of endoscopic images 
such as white light imaging (WLI), NBI, and flexible 
spectral imaging color enhancement (FICE), has been 
reported [24–28]. For ME-NBI in EGC diagnosis, some 
of these studies have reported a sensitivity from 91.2 to 
95.4% and specificity from 71.0 to 90.6% [27, 28].

In the present study, we developed a CNN-based sys-
tem on ECS images of EGC, investigated its diagnostic 
ability in ECS of diagnosis of EGC, and compared the 
ability to that of endoscopists.

Methods
Study subjects
All ECS images were retrospectively collected from 
patients who underwent ECS for the diagnosis of EGC at 
Nippon Medical School Hospital (Tokyo, Japan). Exclu-
sion criteria were as follows: (1) presence of advanced 
GC; (2) diffuse-type GC; (3) presence of ulcer or ulcer 
scar; (4) presence of benign polyps such as a foveolar 
hyperplastic polyp or fundic gland polyp; and (5) poor-
quality images caused by halation, bleeding, mucus, 
defocus, and poor staining. Finally, a total of 2171 ECS 
images from 198 lesions of 130 patients were analyzed in 
this study. All 130 patients had EGC and had undergone 
endoscopic submucosal dissection. All ECS images were 
extracted in JPEG format. This study was conducted in 
accordance with the Declaration of Helsinki. The study 
protocol with opt-out consent was approved by the 
medical ethics committee of the Nippon Medical School 
Hospital (registry no. 30-08-984). All data were fully 
anonymized prior to analysis to protect patient privacy.

ECS observation
All ECS procedures were performed with GIF-Y0002, 
GIF-Y0074, and GIF-H290EC (Olympus Co., Tokyo, 
Japan) and the video processors EVIS LUCERA CV-260/
CLV-260 or EVIS LUCERA ELITE CV-290/CIV-290SL 
(Olympus Co., Tokyo, Japan) in the present study. 
All procedures were performed by two experienced 
endoscopists as preoperative screenings of endoscopic 
submucosal dissection (ESD). As an observation pro-
tocol, the part of interest was observed by white light, 
NBI, and magnified NBI observation. After the magni-
fied NBI observation, we performed vital staining and 
started ECS observation. For in  vivo dyeing, double 
staining with crystal violet and methylene blue was used. 
First, we observed the background noncancerous mucosa 
around the cancer and then the cancerous area. When 
observing a cancerous area, we started from a part that is 
clearly cancerous mucosa by other observation methods 
and moved around the observation site while remaining 
in contact with the lesion. If the lesion was considered 
to have moved outside of the lesion or if we recognized 
clear boundaries in cancerous mucosa, endocytoscopy 
was moved away from the lesion and the observation was 
repeated. ECS images were obtained either from EGC 
or noncancerous gastric mucosa (NGM). All EGCs and 
NGM surrounding the cancer were resected via ESD, 
and the final histological diagnoses were identified. ECS 
images were obtained either from EGC or NGM. All 
EGCs and NGM surrounding the cancer were resected 
via ESD, and the final histological diagnoses were 
identified.
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Preparation training and test data sets
All images were reviewed by one endoscopist (H.N.) and 
classified as EGC or NGM. In addition, we divided all 
images into training, validation, and test datasets by ran-
dom selection as follows: (1) the training, validation, and 
test datasets were mutually exclusive; (2) ECS images in a 
single patient were not divided into training, validation, 

and test datasets; (3) the total number of images for 
training and validation datasets was set to 3 times the 
number of images for the test dataset. For the training 
and validation datasets, we collected 906 images from 61 
EGCs (Fig. 1a–f) and 717 images from 65 NGM (Fig. 1g–
l). Moreover, we prepared a test dataset of ECS images, 
which included 313 images of 39 EGCs and 235 images of 

Fig. 1  Representative endocytoscopic images in the training dataset. a–f Cases of intestinal-type early gastric cancer showing specific irregularities 
in gland structure and cell nuclei. g–l Cases of noncancerous gastric mucosa a, in which the gland lumen is well preserved and mucosal cells are 
regularly arranged
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33 NGMs. (4) The validation dataset was used for inter-
nal validation in construction of CNN. (5) The training 
and validation data were divided randomly by engineers 
of AI Medical Service Inc.

Constructing CNN models
A PyTorch was employed as the deep learning frame-
work. Our AI system was created using ResNet50, which 
is one of the models for image recognition; 812 cancer 
images and 644 noncancer images of ECS were used to 
train the AI system. For the validation, 94 cancer images 
and 73 noncancer images were used. No cross-validation 
was performed in this study. Stochastic gradient descent 
was used as the optimization function for training with a 
learning rate of 0.0001, moments of 0.9, and weight decay 
of 0.000005. The batch size was set to 5, and the num-
ber of epochs was set to 100 for training. The image was 
preprocessed by resizing it to 256 × 256 pixels and crop-
ping the center to 224 × 224 pixels so that the corners of 
the image would not affect the inference of the AI model. 
The model created was 91 epochs, which had the highest 
accuracy in the validation data.

Outcome measures
Per‑image analysis
After constructing the CNN, we evaluated the diagnostic 
ability through the test dataset. For each image, the CNN 
constructed the probability score for EGC and receiver 
operating characteristic (ROC) curve by varying the 
operating threshold. The area under the curve (AUC) was 
calculated using the ROC curve. The cut-off value was 
determined as 0.50. As shown in Table  1, the accuracy, 
sensitivity, specificity, positive predictive value (PPV), 
and negative predictive value (NPV) of cancer diagnosis 
of the CNN in the per-image analysis were measured; the 
parameters are defined in Table  1. Some images in the 
test dataset were analyzed with a heatmap obtained by 
applying Gradient-weighted Class Activation Mapping 
(Grad-CAM) to the trained CNN [29].

Per‑lesion analysis
When more than half of ECS images from one lesion 
were classified as EGC, the lesion was defined as EGC. 
We calculated the accuracy, sensitivity, specificity, PPV, 
and NPV of cancer diagnosis of the CNN in the per-
lesion analysis as well as per-image analysis (Table 1).

Diagnostic performance: CNN versus endoscopists
We compared the diagnostic ability of the CNN with 
three endoscopists blinded to the histological and CNN 
diagnoses and who independently reviewed the same 
test dataset. Of the three endoscopists, two endoscopists 
(endoscopist A [K.H.] and endoscopist B [E.K]) were 
experienced endoscopists, with > 5  years’ experience in 
endoscopy, and one endoscopist (endoscopist C [K.Y.]) 
was a trainee, with < 2  years’ experience. We classi-
fied all images as EGC or NGM. Before the review, the 
endoscopists were informed of the diagnostic criteria of 
ECS for GC based on high-grade ECS atypia, which were 
previously described [17, 18], using a training set com-
posed of a schema, a pathological image, and 10 ECS 
images of each EGC and NGM. After review, we calcu-
lated the accuracy, sensitivity, specificity, PPV, and NPV 
of cancer diagnosis in the per-image analysis of both the 
endoscopists and CNN.

Statistical analyses
All analyses were performed using the EZR software 
program (Saitama Medical Center, Jichi Medical Univer-
sity) [30]. Fisher’s exact test was used for comparisons 
between the endoscopists and CNN. P < 0.05 was consid-
ered statistically significant.

Results
Clinicopathological features of EGCs in the test dataset
Thirty-nine EGCs of 38 patients were enrolled in test 
datasets, and all EGCs were resected via ESD. Among 
the 39 patients, 3 patients underwent additional surgi-
cal treatment of gastrectomy according to Japanese GC 
treatment guidelines [31]. Twenty-six patients (68.4%) 

Table 1  Definition of accuracy, sensitivity, specificity, PPV, and NPV in the per-image analysis (per-lesion analysis)

PPV, positive predictive value; NPV, negative predictive value; CNN, convolutional neural network; EGC, early gastric cancer; NGM, noncancerous gastric mucosa

Parameter Definition

Accuracy Correctly diagnosed images (lesions) by the CNN or endoscopists/total images (lesions)

Sensitivity Correctly diagnosed EGC images (lesions) by the CNN or endoscopists /total EGC images (lesions)

Specificity Correctly diagnosed NGM images (lesions) by the CNN or endoscopists /total NGM images (lesions)

PPV Correctly diagnosed images (lesions) by the CNN or endoscopists/total images (lesions) diagnosed 
as EGC by the CNN or endoscopists

NPV Correctly diagnosed EGC images (lesions) by the CNN or endoscopists /total images (lesions) diag-
nosed as NGM by the CNN or endoscopists
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were males, and 12 patients (31.6%) were females. The 
median age was 77 years (range, 53–91 years). The most 
frequent location and macroscopic type were lower-third 
(18/39 patients; 46.1%) and 0-IIc type (27/39 patients; 
69.2%). The median diameter of EGCs was 18 mm (range, 
5–49  mm). Only three cases (7.7%) were submucosal 
invasive cancer (pT1b) according to JGCA.

Per‑image analysis
The trained CNN required 7.0 s to analyze the test data-
set. Based on the probability score for EGC, the AUC 
was 93.0% (Fig. 2) and the cut-off value for the probabil-
ity score was 0.5. The accuracy of the CNN for EGC was 
83.2%, with 456 of 548 images being correctly diagnosed 

(Table  2). The sensitivity, specificity, PPV, and NPV for 
EGC diagnosis by the CNN were 76.4%, 92.3%, 93.0%, 
and 74.6%, respectively. Representative images of ECS 
with heatmap visualizations in EGC that were correctly 
diagnosed by the CNN, NGM correctly diagnosed by the 
CNN, and false-positive and negative cases are shown 
in Fig. 3. In the EGC images, the irregular and swelling 
nuclei, displayed in red color, were determined as cancer 
by the CNN. In the NGM images, the CNN may focus on 
regularly lined cells and wide lumens displayed in yellow 
and red colors.

Misdiagnosed images by the CNN
Eighteen images from 7 NGM lesions were identified as 
false-positive by the CNN, probably because of overstain-
ing, mucus, and defocus. All 18 images were misdiag-
nosed as EGC by at least one endoscopist. Seventy-four 
images from 28 EGC lesions were identified as false-neg-
ative by the CNN, probably due to insufficient staining 
and defocus. As shown in Fig. 3, comma-shaped cells in 
the interstitial portion of gastric glands were misdiag-
nosed as cancer cells by the CNN, probably because these 
cells were hyperchromatic and similar to the nuclei of 
cancer cells. In the false-negative cases, the CNN focused 
on the area where the lumen and nuclei were unclear due 
to heterogeneous staining.

Per‑lesion analysis
A total of 39 EGC lesions and 33 NGM lesions were 
included in the study. Thirty-two lesions were correctly 
diagnosed as GC by the CNN (sensitivity, 82.1%). The 
CNN accurately diagnosed 30 of 33 NGM lesions as non-
cancerous (specificity, 90.9%). The overall accuracy, PPV, 
and NPV for EGC diagnosis by the CNN were 86.1%, 
91.4%, and 81.1%, respectively (Table 2).

Diagnostic performance: CNN versus endoscopists
Comparison of the diagnostic performances between the 
CNN and endoscopists in the per-image analysis is sum-
marized in Table 2. It took > 20 min for the endoscopists 
to review all the images. The overall accuracy, sensitiv-
ity, specificity, PPV, and NPV for EGC diagnosis by the 
three endoscopists were 76.8%, 73.4%, 81.3%, 83.9%, and 
69.6%, respectively. On comparing between experienced 
endoscopists and CNN, sensitivity was significantly 
higher for endoscopists and specificity was significantly 
higher for CNN. No significant difference in accuracy 
was noted between two experienced endoscopists and 
the CNN (Tables  3, 4). On comparing between trainee 
and CNN, CNN was superior to the trainee (Table  5). 
The specificity for EGC diagnosis by the CNN was sig-
nificantly higher than those by the endoscopists. In the 
per-lesion analysis, the overall accuracy, sensitivity, 

Fig. 2  Receiver operating characteristics curve for the artificial 
intelligence system. The area under the curve was 0.93

Table 2  Diagnostic performances of CNN and endoscopists

CNN, convolutional neural network; CI, confidence interval; PPV, positive 
predictive value; NPV, negative predictive value; AUC, area under the curve

Per–image Per–lesion

Accuracy, % (95% CI) CNN 83.2 (79.8–86.2) 86.1 (75.9–93.1)

Endoscopists 76.8 (74.6–78.8) 82.4 (76.7–87.2)

Sensitivity, % (95% CI) CNN 76.4 (71.3–81.0) 82.1 (66.5–92.5)

Endoscopists 73.4 (70.4–76.2) 79.5 (71.0–86.4)

Specificity, % (95% CI) CNN 92.3 (88.2–95.4) 90.9 (75.7–98.1)

Endoscopists 81.3 (78.2–84.1) 85.9 (77.4–92.0)

PPV, % (95% CI) CNN 93.0 (89.2–95.8) 91.4 (76.9–98.2)

Endoscopists 83.9 (81.2–86.4) 86.9 (79.0–92.7)

NPV, % (95% CI) CNN 74.6 (69.2–79.5) 81.1 (64.8–92.0)

Endoscopists 69.6 (66.4–72.8) 78.0 (69.0–85.4)
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specificity, PPV, and NPV for EGC diagnosis by the two 
endoscopists were 82.4%, 79.5%, 85.9%, 86.9%, and 78.0%, 
respectively (Table  5). No significant differences in the 
per-lesion diagnostic performance was observed between 
the CNN and two experienced endoscopists; however, 
the CNN was superior to the trainee regarding accuracy 
and sensitivity (Tables 6, 7, 8).

Discussion
In this study, we constructed an AI-assisted ECS diag-
nosis system for EGC using CNN. On comparing accu-
racy, no significant difference was found between the 
CNN and two experienced endoscopists. In contrast, 
the CNN had a significantly higher rate of accuracy than 
the trainee. Using the CNN, ECS diagnosis for EGC may 

Fig. 3  Endocytoscopic images with heatmap in the test dataset. a, b Cases of intestinal-type early gastric cancer correctly diagnosed by the 
convolution neural network (CNN). c, d Noncancerous gastric mucosa correctly diagnosed by the CNN. e, f False-positive cases. g, h False-negative 
cases
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be leveled, and optical biopsy with AI-assisted ECS may 
avoid the need for forceps biopsy for endoscopists of any 
level.

Several recent studies have reported original CNNs 
in the diagnosis of GC. These were mainly divided into 
two categories: computer-aided detection (CADe) sys-
tems to focus on detection and computer-aided diagno-
sis (CADx) systems for optical biopsy. Miyaki et al. have 
developed a CADx system built by magnifying FICE 
images for classification between EGC and no-malig-
nancy lesions. It showed an accuracy of 85.9%, sensitivity 
of 84.8%, and specificity of 87.0% [26]. In 2020, Horiuchi 
et al. have trained a CADx model with ME-NBI images of 
1492 cases of EGC and 1078 cases of gastritis with sensi-
tivity, specificity, PPV, and NPV of 95.4%, 71.0%, 82.3%, 
and 91.7%, respectively [27]. Similarly, Li et  al. have 
reported that their CADx system with ME-NBI showed 
high sensitivity (91.2%), specificity (90.6%), and accuracy 
(90.1%) for the diagnosis of EGC [28]. Our result is com-
parable to that of these studies, and the AUC of our con-
structed CNN was 93.0%, which is satisfactory.

Several previous studies have reported a CADx system 
with ECS. In 2015, Mori et al. developed a CADx system 
for ECS imaging of colorectal lesions [32]. Recently, the 
same group constructed the EndoBRAIN system based 
on a large number of ECS images (69,142 images); they 
demonstrated that the EndoBRAIN system could distin-
guish neoplastic colon polyps from non-neoplastic colon 
polyps in ECS with NBI [33]. Maeda et  al. have shown 
that the CNN could predict persistent histologic inflam-
mation using ECS in patients with ulcerative colitis [34]. 

Table 3  Diagnostic performances of CNN and endoscopist A in 
the per-image analysis

CNN, convolutional neural network; CI, confidence interval; PPV, positive 
predictive value; NPV, negative predictive value; AUC, area under the curve

CNN Endoscopist A P value

Accuracy, % (95% CI) 83.2 (79.8–86.2) 82.3 (78.8–85.4) 0.75

Sensitivity, % (95% CI) 76.4 (71.3–81.0) 86.6 (82.3–90.2) 0.0014

Specificity, % (95% CI) 92.3 (88.2–95.4) 76.6 (70.7–81.9)  < 0.001

PPV, % (95% CI) 93.0 (89.2–95.8) 83.1 (78.6–87.0)  < 0.001

NPV, % (95% CI) 74.6 (69.2–79.5) 81.1 (75.3–86.0) 0.089

Table 4  Diagnostic performances of CNN and endoscopist B in 
the per-image analysis

CNN, convolutional neural network; CI, confidence interval; PPV, positive 
predictive value; NPV, negative predictive value; AUC, area under the curve

CNN Endoscopist B P value

Accuracy, % (95% CI) 83.2 (79.8–86.2) 84.1 (80.8–87.1) 0.75

Sensitivity, % (95% CI) 76.4 (71.3–81.0) 83.4 (78.8–87.3) 0.036

Specificity, % (95% CI) 92.3 (88.2–95.4) 85.1 (79.9–89.4) 0.019

PPV, % (95% CI) 93.0 (89.2–95.8) 88.2 (83.9–91.6) 0.063

NPV, % (95% CI) 74.6 (69.2–79.5) 79.4 (73.8–84.2) 0.74

Table 5  Diagnostic performances of CNN and endoscopist C in 
the per-image analysis

CNN, convolutional neural network; CI, confidence interval; PPV, positive 
predictive value; NPV, negative predictive value; AUC, area under the curve

CNN Endoscopist C P value

Accuracy, % (95% CI) 83.2 (79.8–86.2) 63.9 (59.7–67.9)  < 0.001

Sensitivity, % (95% CI) 76.4 (71.3–81.0) 50.2 (44.5–55.8)  < 0.001

Specificity, % (95% CI) 92.3 (88.2–95.4) 82.1 (76.6–86.8) 0.001

PPV, % (95% CI) 93.0 (89.2–95.8) 78.9 (72.6–84.3)  < 0.001

NPV, % (95% CI) 74.6 (69.2–79.5) 55.3 (49.9–60.6)  < 0.001

Table 6  Diagnostic performances of CNN and endoscopist A in 
the per-lesion analysis

CNN, convolutional neural network; CI, confidence interval; PPV, positive 
predictive value; NPV, negative predictive value; AUC, area under the curve

CNN Endoscopist A P value

Accuracy, % (95% CI) 86.1 (75.9–93.1) 87.5 (77.6–94.1) 1

Sensitivity, % (95% CI) 82.1 (66.5–92.5) 94.9 (82.7–99.4) 0.15

Specificity, % (95% CI) 90.9 (75.7–98.1) 78.8 (61.1–91.0) 0.30

PPV, % (95% CI) 91.4 (76.9–98.2) 84.1 (69.9–93.4) 0.50

NPV, % (95% CI) 81.1 (64.8–92.0) 92.9 (76.5–99.1) 0.28

Table 7  Diagnostic performances of CNN and endoscopist B in 
the per-lesion analysis

CNN, convolutional neural network; CI, confidence interval; PPV, positive 
predictive value; NPV, negative predictive value; AUC, area under the curve

CNN Endoscopist B P value

Accuracy, % (95% CI) 86.1 (75.9–93.1) 88.9 (79.3–95.1) 0.80

Sensitivity, % (95% CI) 82.1 (66.5–92.5) 89.7 (75.8–97.1) 0.52

Specificity, % (95% CI) 90.9 (75.7–98.1) 87.9 (71.8–96.6) 1

PPV, % (95% CI) 91.4 (76.9–98.2) 89.7 (75.8–97.1) 1

NPV, % (95% CI) 81.1 (64.8–92.0) 87.9 (71.8–96.6) 0.52

Table 8  Diagnostic performances of CNN and endoscopist C in 
the per-lesion analysis

CNN, convolutional neural network; CI, confidence interval; PPV, positive 
predictive value; NPV, negative predictive value; AUC, area under the curve

CNN Endoscopist B P value

Accuracy, % (95% CI) 86.1 (75.9–93.1) 70.8 (58.9–81.0) 0.042

Sensitivity, % (95% CI) 82.1 (66.5–92.5) 53.8 (37.2–69.9) 0.014

Specificity, % (95% CI) 90.9 (75.7–98.1) 90.9 (75.7–98.1) 1

PPV, % (95% CI) 91.4 (76.9–98.2) 87.5 (67.6–97.3) 0.68

NPV, % (95% CI) 81.1 (64.8–92.0) 62.5 (47.4–76.0) 0.092
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Kumagai et  al. have developed their own AI system to 
analyze ECS images of the esophagus [35]. However, the 
application of the CNN with ECS in the stomach has not 
been examined. To the best of our knowledge, this is the 
first report to evaluate the performance of CNN with 
ECS to diagnose GC. In this study, we focused on intesti-
nal-type EGC because GC has various histological types. 
Furthermore, most cases that needed to be differentiated 
from non-neoplastic lesions were at the early stage.

To determine the cause of misdiagnosis by the CNN, 
we analyzed ECS images with heatmaps (Fig. 3) in false-
positive and false-negative cases. We can use heatmaps to 
visually verify the location at which the CNN is focused. 
Regarding the false-positive cases, the red area in the 
heatmap corresponded to the hyperchromatic cell or 
nuclei in the proper mucosal layer. These hyperchromatic 
cells, which exist outside lined foveolar epitheliums, may 
not be the nuclei of cancer cells, but inflammatory or 
mast cells. Observing the NGM with ECS, it is crucial to 
establish whether there is intestinal metaplasia. Methyl-
ene blue could be used to stain the intestinal metaplasia 
mucosa easily [36, 37], which develops the character of 
columnar absorptive cells and a brush border similar to 
that of the intestinal mucosa. Conversely, the foveolar 
epithelium on the surface of the fundic gland mucosa 
without intestinal metaplasia makes it difficult to stain 
using methylene blue. Therefore, when we observe fundic 
gland mucosa with active gastritis, not including intes-
tinal metaplasia, other cells in the lamina propria are 
emphasized rather than the foveolar epithelium (Fig. 1k).

Figure  3g, h presents representative false-negative 
images for the CNN. The most common cause of false-
negative cases was poor staining. Poor staining makes it 
difficult for the CNN to recognize nuclear shape, leading 
to misdiagnosis. In the present study, both endoscopists 
accurately diagnosed more than half of the false-neg-
ative images of the CNN (38/74 images), because the 
endoscopists can distinguish between the poorly stained 
region and evaluated region. Therefore, sufficient stain-
ing of the lesion is essential for adequate ECS diagnosis 
by the CNN. Most recently, an image-enhanced program 
named Texture and Color Enhancement Imaging (TXI) 
was developed, which allowed for remarkable color 
enhancement in ECS images, including in the poorly 
stained ones. Therefore, using TXI in ECS may increase 
the diagnostic performance of the AI-assisted ECS diag-
nosis system.

The CNN was inferior to the two experienced 
endoscopists in diagnostic sensitivity for EGC but dem-
onstrated higher specificity in per-image analysis. Totally, 
the CNN was not superior to the endoscopists as for 
diagnostic ability. In contrast, when looking at the diag-
nosis time, it took > 20 min for the endoscopists to review 

all the images, whereas the CNN read all the images in 
7  s. Moreover, our CNN for ECS has achieved a higher 
diagnostic ability than that achieved by the trainee; there-
fore, even trainees can accurately and easily establish 
ECS diagnoses using the CNN.

Our main concern is determining when and where to 
use this CNN. CADe systems for detecting a suspicious 
lesion for cancer require a higher sensitivity, whereas 
CADx for differentiating cancer from noncancer war-
rants a higher specificity. CAD for ECS is of the latter 
type. Considering the character of ECS, it is useful as a 
supportive diagnostic tool for the CNN to complement 
conventional endoscopic diagnosis when an endoscopic 
biopsy is not possible or pathological diagnosis is diffi-
cult to determine. In particular, we should use the CNN 
in patients who take three or more antithrombotic drugs 
and have lesions diagnosed as gastric indefinite for neo-
plasia [38]. 

This study had several limitations. First, this study was 
a retrospective single-center study, resulting in a small 
number of test images. Second, diffuse-type EGC, gastric 
adenomas, gastric polyps, and NGM with inflammatory 
cells, which contribute to poor-quality images, were not 
included in this study according to the exclusion criteria. 
Observation by ECS, especially in the stomach, is more 
likely to cause poor-quality images due to rich mucus 
cells leading to poor dye staining than observations by 
WLI, NBI, or ME-NBI. For clinical applications, these 
lesions and images should be included. Recently, Hori-
uchi et  al. have investigated the usefulness of ECS with 
NBI in EGC diagnosis [39]. Therefore, further large-scale 
research, including ECS observation on other various 
gastric lesions and assessment on staining quality, is war-
ranted in the future. Third, it is known that some noncan-
cerous mucosa exists in cancer, and we cannot completely 
exclude the possibility that some of the images used in 
the training dataset as cancer ECS images are noncancer 
images. To exclude the false-positive contamination, we 
intended to focus on a cancerous part of a target cancer 
during ECS observation. We routinely performed white 
light and magnified NBI observation proceeding to ECS. 
Most of noncancerous parts in a cancerous lesion can be 
recognized with magnified NBI observation, and we may 
avoid the false-positive contamination during ECS obser-
vation of a target cancer. However, it is impossible to get 
a complete match between the histopathological image 
and ECS image and which may cause a decrease in the 
accuracy of the training images. Fourth, there may be a 
selection bias when sorting through all the images.

In summary, our CNN may be a useful CAD system in 
EGC diagnosis with higher specificity than diagnosis by 
endoscopists. Further investigation should be conducted 
for the construction of an AI-assisted system utilized for 
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a wide variety of gastric lesions and diseases other than 
EGC.
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